Cane Creek (EEP #69) Stream Restoration Site

2010 Annual Monitoring Report (Year 4 of 5)

Alamance County, North Carolina EEP Project No. 69 Design Firm: Stantec Consulting Services, Inc.

April 2011

Prepared for:

NCDENR / Ecosystem Enhancement Program

1619 Mail Service Center Raleigh, NC 27699-1619 Prepared by:

The Catena Group 410-B Millstone Drive Hillsborough, NC 27278 919-732-1300

TABLE OF CONTENTS

1.0	Executive Summary	1
2.0	Methodology	3
2.1	Vegetation Methodologies	3
2.2	Stream Methodologies	3
3.0	References	3

APPENDICES

Appendix A. Project Vicinity Map and Background Tables
Figure 1. Vicinity Map and Directions
Table 1a and b. Project Components and Summations
Table 2. Project Activity and Reporting History 7
Table 3. Project Contacts Table 8
Table 4. Cane Creek /EE P #69 Project Attribute Table
Appendix B. Visual Assessment Data10
Figure 2. Current Condition Plan View (CCPV)
Table 5. Visual Stream Morphology Stability Table 16
Table 6. Vegetation Condition Assessment Table 17
Photo 1. Looking downstream at XS-1
Photo 2. Looking downstream at XS-2
Photo 3. Looking downstream at XS-319
Photo 4. Looking downstream at XS-419
Photo 5. Looking downstream at XS-5
Photo 6. Plot 2 (Sept. 6, 2008)
Photo 7. Plot 3 (Sept. 6, 2008)
Photo 8. Plot 4 (Sept. 6, 2008)

Photo 9. Plot 5 (Sept. 6, 2008)	20
Photo 10. Plot 2 (Sept. 3, 2010)	20
Photo 11. Plot 3 (Sept. 3, 2010)	20
Photo 12. Plot 4 (Sept. 3, 2010)	20
Photo 13. Plot 5 (Sept. 3, 2010)	20
Appendix C. Vegetation Assessment Data	
Table 7. Vegetation Plot Mitigation Success Summary Table	22
Table 8. CVS Vegetation Metadata Table	23
Table 9. CVS Stem Count Total and Planted by Plot and Species	24
Appendix D. Stream Survey Data	
Figure 3. Cross Section 1	26
Figure 4. Cross Section2	27
Figure 5. Cross Section 3	
Figure 6. Cross Section 4	29
Figure 7. Cross Section 5	
Figure 8. Longitudinal Profile	
Figure 9. Pebble Count Plots – XS-1	
Figure 10. Pebble Count Plots – XS-3	
Figure 11. Pebble Count Plots – XS-5	
Table 10 a and b. Baseline – Stream Data Summary	35
Table 11 a and b. Monitoring – Cross-section and Stream Reach Morphology	
Appendix E. Hydrologic Data	
Table 12. Verification of Bankfull Events	

1.0 Executive Summary

The Cane Creek (EEP #69) stream restoration project comprises 2,271 linear feet of stream restoration with 6.42 acres of buffer restoration. The project is in Alamance County north of Siler City, north of Old Dam Road (SR 2370), and west of Snow Camp Road (SR 1004). The project site is located in the Cape Fear River basin (HUC 03030002050050); this HUC has been identified as a Targeted Local Watershed (TLW) in EEP's Cape Fear River Basin Restoration Priorities 2009. Site construction and plantings were completed in March of 2006. The goals and objectives for Cane Creek (EEP #69) stream restoration are:

Goals:

- Improving water quality
- Reducing erosion and sedimentation
- Reducing nutrient loads from entering the stream through a filtration buffer
- Increasing the stream's access to its floodplain

Objectives:

- Improving aquatic habitat with the use of natural material stabilization structures and a riparian buffer
- Excluding cattle from the stream
- Providing wildlife habitat through the creation of a riparian zone

There are five vegetation plots, with only Plot 4 having identifiable planted stems with are live stakes. Four of the vegetation monitoring plots were added after the first monitoring year, therefore to err on the side of caution, stems, planted or not, were identified as natural stems. The plots were monitored using the CVS-EEP vegetation monitoring protocol, which was implemented for monitoring year (MY) -02, MY-03, and MY-04, and which will continue to be used for the remainder of the monitoring period. Vegetation Plot 1 was removed this monitoring year due to a proposed crossing which will traverse the plot. Supplemental plantings for areas with low woody stem densities will be conducted in 2011. A replacement Vegetation Plot 1 will be established for MY-05. Including Plots 2-5, there are 1,991 stems/acre; this included live stakes, planted stems, and natural/volunteer stems. All vegetation plots contain stem counts above the success criteria. The success criterion for planted woody species is 320 stems/acre after MY-03. A mortality rate of 10 percent will be allowed after MY-04 (288 stems/acre), with another 10 percent allowed after MY-05 (260 stems/acre). Natural woody stems are quantified on separate data sheets. An accurate number of planted stems/acre could not be determined since the planted stems could not be distinguished from natural stems.

The vegetation problem areas are mainly composed of a few bare benches with low stem densities, easement encroachment by beavers, and invasive exotics. Beavers encroached into the upper reach and built three dams: a large one at station 13+00 and two smaller ones at stations 13+75 and 22+50. Beaver trapping was conducted by Animal and Plant Health Inspection Service (APHIS) in August of 2010.

Invasive exotics throughout the conservation easement that are a threat to native vegetation include tree of heaven (*Alianthus altisimma*), princess tree (*Paulownia tomentosa*), and multiflora rose (*Rosa multiflora*). Other invasive exotics infrequently observed that did not seem to be an imminent threat include tall fescue (*Schedonurus arundinaceus*), Japanese honeysuckle (*Lonicera japonica*), and Chinese privet (*Ligustrum sinense*). According to the EEP Invasives of Concern/Interest List, tree of heaven, princess tree, mulitflora rose, Chinese privet, asnd Japanese honeysuckle are all classified as "High Concern" species and fescue as a "Low/Moderate Concern" species. For additional information relating to vegetation, see Appendix C.

The UT to Cane Creek Restoration project shows little change from MY-03 to MY-04. When field work was conducted, the channel was mainly dry and overgrown with vegetation in some segments of the channel. Vegetation is well established on the banks and floodplain throughout the reach. The stream banks are stable and the instream structures are functioning as intended. A comparison of the longitudinal profile between MY-03 and MY-04 shows little change in the portion of the stream that is downstream of the crossing at 19+10. However, the profile upstream of the stream crossing indicates that some of the pools are aggrading slightly due to the impoundment caused by recent and remnant beaver dams. Aggradation (occurring in approximately 13% of the project length) and the formation of mid-channel bars (present in MY-02) are still an issue throughout most of the project. This soils deposition is being held in place by vegetation, including willows and cattails, in some areas of the channel. The mid-channel; bars are preventing the flow from centering in the channel.

Several location along the stream reach have obstruction causing backwater conditions; the stream crossing at station 19+10 and the remnant beaver dams at stations 13+75 (removed August 2010) and 15+50 (remnant soils). The stream crossing at station 32+50, and the remnant beaver dam at station 20+50 were not causing backwater conditions at the time of our survey due to the dry conditions.

A comparison of the cross sections between MY-03 and MY-04 shows little change. Cross Section 2 shows slight bank erosion due to local disturbance caused by a dislodged tree on the bank. The stream banks in general are in good condition and the vegetation is well established at the permanent cross section locations. For MY-04, the bankfull data calculations were based on the baseline bankfull elevations. This elevation has varied in previous monitoring years. Pebble counts at riffle Cross Sections 1 and 3 show a trend towards a finer substrate due to the impoundment caused by the beaver dams. The pebble count at the riffle on Cross Section 5 continues a trend toward coarser substrate.

Summary information/data related to the occurrence of items such as beaver or encroachment, and statistics related to performance of various project and monitoring elements, can be found in the tables and figures in the report appendices. Narrative background and supporting

information formally found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices are available for EEP upon request.

2.0 Methodology

Methodologies follow EEP monitoring report template Version 1.3 (1/15/10) and guidelines (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect groundwater gauge locations, vegetation monitoring plot origins, and problem area locations. Cross sectional and longitudinal surveys were conducted using Total Station survey equipment. Data were entered into AutoCAD Civel3D to obtain dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports were then generated to display summaries of the stream survey.

2.1 Vegetation Methodologies

Level II of the EEP/CVS protocol, version 4.2, was used to collect data for MY-04, which includes natural stems. Since Plots 2, 3, and 5 were established in MY-02, all stems recorded in these plots were classified as natural stems. Vegetation Plot 1 was omitted this year due to an additional stream crossing that will traverse the plot. Data collected for these plots are in Appendix C.

2.2 Stream Methodologies

Stream profile and cross sections were surveyed using Total Station equipment and methods. The survey data were plotted using AutoCAD Civel3D. The longitudinal profile was generated using the MY-02 alignment. Wolman's Method was used to determine particle size distribution. Cross sectional data were extracted based on a linear alignment between the end pins.

3.0 References

- Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (<u>http://cvs.bio.unc.edu/methods.htm</u>)
- Weakley, A.S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. Working draft of January 2007. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina. 1015pp.

Appendix A. Project Vicinity Map and Background Tables

Table 1a and b. Project Components and Summations

Table 1a. Project Components Cane Creek / EEP #69									
Project Component or Reach ID	Existing Feet/ Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements ¹	Comment
Reach 1	2,260*	R	Р2	2,260 lf	10+11- 32+88	1:1	2,260*	CF=5730	Instream structure and vegetated buffer

*This length exclude the 17' wide crossing; CF = Cattle Fencing

Table 1b. Component Summations Cane Creek / EEP #69								
		Riparian W	etland (ac)	Non-				
			Non-	Riparian	Upland	Buffer		
Restoration Level	Stream (lf)	Riverine	Riverine	(ac)	(ac)	(ac)	BMP	
Restoration	2,260	-	-	-	-	-	-	
Enhancement	-	-	-	-	-	-	-	
Enhancement I	-	-	-	-	-	-	-	
Enhancement II	-	-	-	-	-	-	-	
Creation	-	-	-	-	-	-	-	
Preservation	-	-	-	-	-	-	-	
HQ Preservation	-	-	-	-	-	-	-	
Totals (feet/acres)	2,260	0	0	0	0	0	1	
MU Totals	2,260	0	0	0	0	0		

Table 2. Project Activity and Reporting History						
Cane Creek / EEP #69						
Elapsed Time Since Grading Complete:	4 years 8 months					
Elapsed Time Since Planting Complete:	4 years 7 months					
Number of Reporting Years ¹ :	4					
	Data Collection	Completion or				
Activity or Deliverable	Complete	Delivery				
Restoration Plan	N/A	April 2003				
Final Design – Construction Plan	N/A	October 2005				
Construction	N/A	March 2006				
Containerized, bare root, and B&B plantings for Reach/Segments 1&2	N/A	March 2006				
Mitigation Plan / As-Built (Year 0 Monitoring – baseline)	May 2006	June 2006				
Year 1 Monitoring	February 2007	March 2007				
Year 2 Monitoring	October 2008	January 2009				
Year 3 Monitoring	September 2009	December 2009				

Table 2. Project Activity and Reporting History

1 = Number of reports produced excluding the baseline

Table 3. Project Contact Table Cane Creek / EEP #69				
Designer	Stantec Consulting Services Inc 801 Jones Franklin Road, Suite 300 Raleigh, North Carolina 27606			
Primary Project Design POC	David Bidelspach - (919) 851-6866			
Construction Contractor	Shamrock Environmental Corp. 6101 Corporate Park Drive Browns Summit, North Carolina 27699			
Construction Contractor POC	Bill Wright - (800) 881-1098			
Survey Contractor	Mulkey Engineers and Consultants P.O. Box 33127 Raleigh, North Carolina 27636			
Survey Contractor POC	Derek F. Batts – (919) 851-1912			
Planting Contractor	Seal Brothers Contracting, LLC P.O.Box 86 Dobson, North Carolina 27017			
Planting Contractor POC	Brian Seal – (336) 786-2263			
Seeding Contractor	Seal Brothers Contracting, LLC P.O.Box 86 Dobson, North Carolina 27017			
Seeding Contractor POC	Brian Seal – (336) 786-2263			
Seed Mix Sources	Shamrock Environmental Corp. 6101 Corporate Park Drive Browns Summit, North Carolina 27699			
Nursery Stock Suppliers	Hills Nursery Co., Inc. (931) 668-4364			
Monitoring Performers	The Catena Group (TCG) 410-B Millstone Drive Hillsborough, North Carolina 27678			
Stream Monitoring POC	Ward Consulting Engineers 8368 Six Forks Road, Suite 104 Raleigh, NC 27613-5083			
Vegetation Monitoring POC	The Catena Group (TCG) 410-B Millstone Drive Hillsborough, North Carolina 27678			
Wetland Monitoring POC	N/A			

u u	
Project County	Alamance
Physiographic Region	Piedmont
Ecoregion	Carolina Slate Belt
Project River Basin	Cape Fear
USGS HUC for Project (14 digit)	0303002050050
NCDWQ Sub-basin for Project	Cane Creek
Within extent of EEP Watershed Plan?	Watershed Restoration Plan for the Cape Fear River Basin 2001
WRC Hab Class (Warm, Cool, Cold)	Warm water
% of Project easement fenced or demarcated	100% fenced beyond the 50 ft easement buffer
Beaver activity observed during the design phase?	U
Restoration Component Attribute Table	
Reach 1	
Drainage Area (acres)	2,003
Stream Order	3 rd
Restored Length (feet)	2,271
Perennial or Intermittent	Perennial
Watershed Type (Rural, Urban, Developing, etc.)	Rural
Watershed LULC Distribution:	
Residential	5%*
Ag – Row Crop	10%*
Ag – Livestock	50%*
Forested	35%*
Watershed Impervious cover (%)	<5%*
NCDWQ AU/Index Number	22
NCDWQ Classification	C, NSW
303d listed?	No
Upstream of a 303d listed segment	No
Reasons for 303d listing or stressor	N/A
Total acreage of easement	6.42
Total vegetated acreage within the easement	6.42
Total planted acreage as part of the restoration	6.42
Rosgen classification of pre-existing	C4
Rosgen classification of As-built	C
Valley Type	VIII
Valley Slope	0.0034 ft/ft
Valley side slope range	0.07-0.135 ft/ft
Valley toe slope range	0.02-0.03 ft/ft
Cowardin classification	R3UB1
Trout waters designation	No
Species of concern, endangered, etc.	No
Dominant soil series and Characteristics	
Series	Herndon
Depth	Unknown
Clay %	Unknown
K	Unknown
Т	Unknown

 Table 4. Cane Creek /EE P #69 Project Attribute Table

* These values are approximations from cursory analysis

Appendix B. Visual Assessment Data

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group Year 4 Monitoring Report Year 4 of 5 April 2011

Table 5 Reach ID

Visual Stream Morphology Stability Assessment

Main

Assessed Length

Main Channel 2232

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow faterally (not to include point bars). 			10	285	87%			
		2 Degradation - Evidence of downcutting			Ö	Q	100%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	21	22			95%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	24	23			104%			
		 Length appropriate (>30% of centerline distance between fail of upstream riflie and head of downstrem riffle) 	24	23			104%			
	4 Thalweg Position	1. Thatweg centering at upstream of meander bend (Run)	20	23			87%			
	1	2. Thalweg centering at downstream of meander (Glide)	21	23			91%			
1			-		-					
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extert that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			2	35	99%			99%
1	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	1		100%
		×		Totals	2	35	99%	0	0	99%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	21	32			66%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	22			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms	22	22			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15% (See guidance for this table in EEP monitoring guidance document)	22	32			69%			
	4. Habitat	Pool forming structures maintaining \neg Max Pool Depth Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow	13	13			100%			

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group Year 4 Monitoring Report Year 4 of 5 April 2011

Table 6 Vegetation Condition Assessment

Planted Acreage ¹	6.42					-
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	See CCPV Legend	4	0.08	1.2%
		Ci	imulative Total	4	0,08	1.2%

Easement Acreage ²	14				_	100
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	See CCPV Legend	25	1.34	20.9%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into litems 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the conditon for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the narrative section of the executive summary,

17

Year 4 of 5

April 2011

UT to Cane Creek MY-04 Photo Points

Photo 1. Looking downstream at XS-1

Photo 2. Looking downstream at XS-2

Photo 3. Looking downstream at XS-3

Photo 4. Looking downstream at XS-4

Photo 5. Looking downstream at XS-5

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group Year 4 Monitoring Report Year 4 of 5 April 2011

MY-04 (2010) Vegetation Plot Photos

Photo 6. Plot 2 (Sept 6, 2008)

Photo 7. Plot 3 (Sept 6, 2008)

Photo 8. Plot 4 (Sept 6, 2008)

Photo 9. Plot 5 (Sept 6, 2008) Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group

Photo 10. Plot 2 (Sept 3, 2010)

Photo 11. Plot 3 (Sept 3, 2010)

Photo 12. Plot 4 (Sept 3, 2010)

Photo 13. Plot 5 (Sept 3, 2010)

Year 4 Monitoring Report Year 4 of 5 April 2011 Appendix C. Vegetation Assessment Data

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
01	Plot Removed	
02	N/A	
03	N/A	100%*
04	Yes]
05	N/A]

 Table 7. Vegetation Plot Mitigation Success Summary Table

* Tract mean met for Plot 04, the only plot with confirmed planted stems

Table 8.	CVS	Vegetation	Metadata	Table
----------	-----	------------	----------	-------

Report Prepared By	The Catena Group
Date Prepared	11/5/2010 0:00
DESC	RIPTION OF WORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary of project(s) and project
Metadata	data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots
Vigor by Spn	Frequency distribution of vigor classes listed by species
	Trequency distribution of vigor classes fisted by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each
Damage by Spn	Damage values tallied by type for each species
	Duninge values amed by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot: dead and
Planted Stems by Plot and Spp	missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
	PROJECT SUMMARY
Project Code	69
project Name	UT to Cane Creek
Description	2232 lf of stream restoration
River Basin	Cape Fear
length(ft)	2232 lf
stream-to-edge width (ft)	12
area (sq m)	6.42 acres easement
Required Plots (calculated)	5
Sampled Plots	4*

* Plot 01 was removed from the data set. A replacement plot is scoped to be established in the winter of 2010-11

Table 9. CVS Stem Count Total and Planted by Plot and Species

EEP Project Code 69. Project Name: UT to Cane Creek

			Current Plot Data (MY4 2010)															Anı	nual Me	eans			
			E	69-01-V	/P2	E	69-01-V	'P3	E€	69-01-V	'P4	E	59-01-V	'P5	M	IY4 (201	LO)	N	IY3 (20)9)	M	IY2 (20)8)
Scientific Name	Common Name	Species Type	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	т
Acer negundo	boxelder	Tree																					17
Acer negundo var. negundo	boxelder	Tree									1						1						
Acer rubrum	red maple	Tree																					62
Acer rubrum var. rubrum	red maple	Tree			1			4			8			4			17						
Baccharis halimifolia	eastern baccharis	Shrub Tree						1			1						2						1
Carpinus caroliniana	American hornbeam	Shrub Tree																					14
Cornus amomum	silky dogwood	Shrub									5						5						3
Fraxinus pennsylvanica	green ash	Tree			3						13			4			20						17
Juniperus virginiana	eastern redcedar	Tree																					10
Juniperus virginiana var. virginiana	eastern redcedar	Tree			1			14			1			4			20						
Ligustrum sinense	Chinese privet	Shrub Tree						1			1						2						3
Liquidambar styraciflua	sweetgum	Tree						7			28			10			45						35
Prunus serotina	black cherry	Shrub Tree																					1
Quercus	oak	Shrub Tree			1												1						
Quercus lyrata	overcup oak	Tree						1						1			2						4
Quercus michauxii	swamp chestnut oak	Tree			1												1						4
Rhus copallinum	flameleaf sumac	Shrub Tree																					1
Rhus copallinum var. copallinum	flameleaf sumac	Shrub Tree			1			1									2						
Rosa multiflora	multiflora rose	Shrub Vine						23									23						9
Salix nigra	black willow	Tree						1		5	5					5	6		11	11		13	15
Salix sericea	silky willow	Shrub Tree								2	2					2	2		2	2		2	2
Sambucus canadensis	Common Elderberry	Shrub Tree									7						7						8
Ulmus	elm	Tree																					59
Ulmus alata	winged elm	Tree			1			1			2			23			27						
Ulmus rubra	slippery elm	Tree									63						63						
		Stem count	C	0 0	9	0	0 0	54	0	7	137	0	0 0	46	0	7	246	0	13	13	0	15	265
		size (ares)		1			1			1			1			4			5			5	
		size (ACRES)		0.02			0.02			0.02			0.02			0.10			0.12			0.12	
		Species count	C	0 0	7	, C	0 0	10	0	2	13	C	0 0	6	0	2	18	0	2	2	0	2	18
		Stems per ACRE	0	0 0	364.2) 0	2185	0	283.3	5544	0	0	1862	0	70.82	2489	0	105.2	105.2	0	121.4	2145

Appendix D. Stream Survey Data

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group

26

Year 4 of 5

April 2011

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group

The Catena Group

Year 4 of 5 April 2011

Cane Creek Stream Restoration NCEEP Project Number 69 The Catena Group

			PEBBLE C	OUNT				
Project:	UT to Cane Ci	reek, Project #	ŧ 69			Date:	9/10/201	0
Location:	Cross Section	#1						
a N Real and	17990. 2000.			Particle	Counts			
Inches	Particle	Millimeter	12	Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	13	0	13	12%	12%
	Very Fine	.062125	· · · Ş	0	0	0	0%	12%
	Fine	.12525	A	3	0	3	3%	15%
	Medium	.2550	N	3	0	3	3%	18%
	Coarse	.50 - 1.0	Ď	12	0	12	11%	30%
.0408	Very Coarse	1.0 - 2.0	s	3	0	3	3%	32%
.0816	Very Fine	2.0 - 4.0	12.11.1.1	4	0	4	4%	36%
.1622	Fine	4.0 - 5.7	G	13	0	13	12%	49%
.2231	Fine	5.7 - 8.0	R	9	0	9	9%	57%
.3144	Medium	8.0 - 11.3	· · · · A · · · · :	14	0	14	13%	70%
.4463	Medium	11.3 - 16.0		15	0	15	14%	85%
.6389	Coarse	16.0 - 22.6	· ÉÉÉÉ	10	0	10	10%	94%
.89 - 1.26	Coarse	22.6 - 32.0	i de la Coloria	2	0	2	2%	96%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0	0	0	0%	96%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1	0	1	1%	97%
2.5 - 3.5	Small	64 - 90	C	2	0	2	2%	99%
3.5 - 5.0	Small	90 - 128		0	0	0	0%	99%
5.0 - 7.1	Large	128 - 180	В	1	0	1	1%	100%
7.1 - 10.1	Large	180 - 256	leiei⊈eieiei	0	0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	ti de la composición de la composi Composición de la composición de la comp	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	105	0	105	100%	100%

d16	d35	d50	d84	d95
Silt/Clay	0.0	0.0	0.0	0.0

1	and and others	A started by	PEBBLE C	OUNT				
Project:	UT to Cane C	reek, Project #	¹ 69	- 1. A.	- X]	Date:	9/10/201	0
Location:	Cross Section	#3						
				Particle	Counts			
Inches	Particle	Millimeter	Sec. A. C.	Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	· · · \$	2	0	2	2%	2%
	Fine	.12525	A	38	0	38	37%	39%
	Medium	.2550	N	27	0	27	26%	65%
	Coarse	.50 - 1.0	D	5	0	5	5%	70%
.0408	Very Coarse	1.0 - 2.0	S.	0	0	0	0%	70%
.0816	Very Fine	2.0 - 4.0	111111	2	0	2	2%	72%
.1622	Fine	4.0 - 5.7	Gitt	0	0	0	0%	72%
.2231	Fine	5.7 - 8.0	R	0	0	0	0%	72%
.3144	Medium	8.0 - 11.3	· · · · A · · · ·	0	0	0	0%	72%
.4463	Medium	11.3 - 16.0		0	0	0	0%	72%
.6389	Coarse	16.0 - 22.6	- B. S.	0	0	0	0%	72%
.89 - 1.26	Coarse	22.6 - 32.0	i de la compañía	1	0	1	1%	73%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S.S.	5	0	5	5%	78%
1.77 - 2.5	Very Coarse	45.0 - 64.0		7	0	7	7%	84%
2.5 - 3.5	Small	64 - 90	C	5	0	5	5%	89%
3.5 - 5.0	Small	90 - 128	····o···:	6	0	6	6%	95%
5.0 - 7.1	Large	128 - 180	B	3	0	3	3%	98%
7.1 - 10.1	Large	180 - 256	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0	0	0	0%	98%
10.1 - 14.3	Small	256 - 362	B	0	0	0	0%	98%
14.3 - 20	Small	362 - 512	der bereiten.	0	0	0	0%	98%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	98%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	98%
	Bedrock		BDRK	2	0	2	2%	100%
an a	ana ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o a	ann an ann an Air	Totals	103	0	103	100%	100%

d16	d35	d50	d84	d95
Silt/Clay	0.0	0.0	0.0	0.0

		1.1.1.1	PEBBLE C	OUNT				
Project:	UT to Cane C	reek, Project #	69	100 M		Date:	9/10/201	0
Location:	Cross Section	#5	1944 m					<u> </u>
1272.2	March March			Particle	Counts	T. Same N.S.		
Inches	Particle	Millimeter	1.00	Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	S S	0	0	0	0%	0%
	Fine	.12525	A	4	0	4	4%	4%
	Medium	.2550	N	2	0	2	2%	6%
	Coarse	.50 - 1.0	Ď	11	0	11	10%	16%
.0408	Very Coarse	1.0 - 2.0	S	0	0	0	0%	16%
.0816	Very Fine	2.0 - 4.0		1	0	11	1%	17%
.1622	Fine	4.0 - 5.7	······································	1	0	1	1%	18%
.2231	Fine	5.7 - 8.0	R	4	0	4	4%	22%
.3144	Medium	8.0 - 11.3	· · · · A · · · ·	2	0	2	2%	24%
.4463	Medium	11.3 - 16.0	V.	6	0	6	6%	30%
.6389	Coarse	16.0 - 22.6	· · · · É · · · ·	6	0	6	6%	35%
.89 - 1.26	Coarse	22.6 - 32.0	NEL CO	19	0	19	18%	53%
1.26 - 1.77	Very Coarse	32.0 - 45.0	· · · · S · · · ·	12	0	12	11%	65%
1.77 - 2.5	Very Coarse	45.0 - 64.0	14.2.2.2.2.2.2.2.	20	0	20	19%	84%
2.5 - 3.5	Small	64 - 90	C	11	0	11	10%	94%
3.5 - 5.0	Small	90 - 128	· · · O · · · ·	4	0	4	4%	98%
5.0 - 7.1	Large	128 - 180	Beleiv	1	0	1	1%	99%
7.1 - 10.1	Large	180 - 256	1.1.1.4.1.1	1	0	1	1%	100%
10.1 - 14.3	Small	256 - 362	B	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	ter i ter de	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
ana ang katalang kata	eleste instante	and a second	Totals	105	0	105	100%	100%

d16	d35	d50	d84	d95
Silt/Clay	0.0	0.0	0.0	0.0

				IT to C	ane Ci	Ta reek St	able 10 tream)a. Ba Mitigat	seline ion Sit	Strear e/Proje	n Data	Sumn	nary ain Ch	annel	(2232)	feet)									
Parameter	Gauge ²	Reg	ional C	Curve		Pre-	Existin	g Cond	ition	on reje		Refer	ence R	each(es) Data	,		Design	r. 1		Мо	nitorin	g Basel	line	
Dimension and Substrate - Riffle Only	1.1.1.1	LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)		1.2	200			10000	44.5			-		1.000	14.3			int		24	j meri		100	26.6			1
Floodprone Width (ft)	Floodprone Width (ft) 88											1.27	47			1.41		72				72		122	
Bankfull Mean Depth (ft)		1											1.5		1221	12 221		2				2.2			
¹ Bankfull Max Depth (ft)	× Depth (ft)											1. an 1.	2.2	1. = •	10.33			3.2	1 E 1	1 -32	12.3	12.2	IE C	i zi	(and
Bankfull Cross Sectional Area (ft ²)			121		1 I.		46.5			1.1.2		1	21.4		ter (47.7		1	112	51			1000
Width/Depth Ratio							43					2	10		i CI I	E		12				13.9			
Entrenchment Ratio	Promotion and		10.574				2	1					3.3		A Real Property of	1.2.2		3		1		2.7	(second of	-	
¹ Bank Height Ratio					K = H		0.8	E			1							1	-			1			
Profile												Q				<u>.</u>	ζ	3		Det al		20 70	1-1-1-1		2 and
Riffle Length (ft)			1201				100	12.11	1	1	1	1				1000	11.00	1.00	1	48		54	60		
Riffle Slope (ft/ft)	1		-				0.016							1				0.003		0.002		0.032	0.004		
Pool Length (ft)	1				+ 2mm	Cel			int.	La Canada	in the second second	17-14	19-1-14	1 mm (a)		10.20	i de la		Section	31		43	79	Sec. 1	a sur constitui
Pool Max depth (ft)	1	1	To see it	-		Incest.		1001		1		1	2.5	1				5		The state					
Pool Spacing (ft)	1		1-1-1		h Ell		355		1		9	1		49	E11	121		82		77		100	160	1	10.000
Pattern							101111		-			Section 2		-			1-3	A E A		-				-	Constant of the
Channel Beltwidth (ft)			ha.	1		1	63		1000				80	4		(EII)	100	105	1.55	1.00		110	1.1	1000	
Radius of Curvature (ft)		1.5					24		1		9.3			29			48	60	72	44		64	83	1	
Rc:Bankfull width (ft/ft)	1		9.000	Terra 1	Na.			1			0.7		1	3	hists i		2		3		120				
Meander Wavelength (ft)	1		The second	1	1.		218				32			92			53	123	192	48		127	205		
Meander Width Ratio	Transfer and		1.5.4		5-		14	ia				1.20	5.6		1	1.00		4.38			2 - 11	4.14	1		Cr.unt
																		and a data with the			4				
Transport parameters		_		1							2									<u> </u>					
Reach Shear Stress (competency) lb/f ²							0.	54	_									0.26	- in - i						
Max part size (mm) mobilized at bankful	1)			E = =		5	5			6							55							
Stream Power (transport capacity) W/m ²								s			1									1					
Additional Reach Parameters	1000 B	-											- 3.			2 - 3	1								
Rosgen Classification							C	:4	_		-		С	4b				C4			_	C	4	_	
Bankfull Velocity (fps)	in th		1.01	1.0.0	7 7		4	.3			1						11	4.2		_					
Bankfull Discharge (cfs)					1000		2	02		- A.	1000						10-	-		10-					
Valley length (ft)	1						19	60			- C					11			. 3			-		-	
Channel Thalweg length (ft)		1,			1		23	01			£		3	97		- 21	122	2232	1.200	1		22	32		
Sinuosity (ft)					1.17								1	.2				1.14		-		1.	14		
Water Surface Slope (Channel) (ft/ft)	1				0.0056													0.0023				0.0	029		
BF slope (ft/ft)	1000	1		21	0.0056											- 1 -		0.0023				0.0	032		
³ Bankfull Floodplain Area (acres					i i i i i i i i i i i i i i i i i i i															-		100			
⁴ % of Reach with Eroding Banks					÷						1						172			18					
Channel Stability or Habitat Metric	1	1.			1											- 11									
Biological or Other		1			h E E																				

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare)

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) UT to Cane Creek Stream Mitigation Site/Project No. 69 Main Channel (2232 feet)

Parameter	Pre-l	Existing	Con	lition	Refe	rence	Rea	ch(es)	Data		0	Desig	n	_	1	As	-built	/Base	line
¹ Ri% / Ru% / P% / G% / S%	1	TT	1	1	1	1	1 - 5	TT	T	11	1	1.1	11	11		ГI	-1	-1-	TT
¹ SC% / Sa% / G% / C% / B% / Be%							1.11		100.00									12	
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)		18													1		-		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	1 = 1	100					IE?										2.3	11	
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	1.01		1			1111			1.000					1		1.5.14			

Shaded cells indicate that these will typically not be filled in

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

36

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide

						Table	e 11a.	Monit	oring	Data -	Dime	nsion	al Mo	rphole	ogy Si	umma	ry (Di	mensi	onal F	Param	eters ·	- Cros	ss Sec	tions)										
								UT	to Car	ne Cre	ek Str	eam l	Nitiga t	tion S	ite/Pro	oject l	No. 69	Mai	n Cha	nnel (2232 1	eet)													
			Cross S	Section	1 (Riffle)				Cross S	Section	2 (Pool)				Cross S	Section	3 (Riffle	e)				Cross \$	Section	4 (Pool)				Cross S	ection	5 (Riffle	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	574.45	574.43	574.49	574.47	574.43			572.60	572.29	572.62	572.68	572.29			NA	NA	571.61	571.51	571.61			NA	NA	571.25	571.33	571.25			NA	NA	569.72	569.81	569.72		
Bankfull Width (ft)	26.6	27.2	28.31	25.451	29.142			26.2	24.2	26.167	27.244	21.691			NA	NA	23.452	22.504	23.488			NA	NA	31.209	32.998	28.319			NA	NA	26.315	25.667	22.679		
Floodprone Width (ft)	72	72	72	72	72			72	72	72	72	72			NA	NA	95.4	95.4	95.4			NA	NA	92	92	92			NA	NA	59.101	59.1	59.1		
Bankfull Mean Depth (ft)	1.9	1.8	1.65	1.7358	1.5973		· · · · · · · · · · · · · · · · · · ·	2.2	2.2	2.1664	2.0231	2.0584	· · · · · · · · · · · · · · · · · · ·	-C	NA	NA	1.9524	1.8702	2.0248			NA	NA	1.8512	1.69	1.8376			NA	NA	1.6502	1.5316	1.7189		
Bankfull Max Depth (ft)	3.2	3.1	2.9	2.96	2.87			3.7	3.6	3.55	3.445	3.15			NA	NA	3.31	3.21	3.39			NA	NA	4.26	4.24	4.08			NA	NA	2.83	2.86	2.83		
Bankfull Cross Sectional Area (ft ²)	51	48	46.77	44.177	46.549			56.5	53.6	56.689	55.119	44.648			NA	NA	45.787	42.088	47.557			NA	NA	57.773	55.766	52.039			NA	NA	43.424	39.312	38.985		
Bankfull Width/Depth Ratio	13.9	15.4	17.14	14.663	18.245			12.1	11	12.079	13.466	10.538			NA	NA	12.012	12.033	11.6			NA	NA	16.859	19.525	15.411			NA	NA	15.947	16.759	13.194		
Bankfull Entrenchment Ratio		2.65	2.54	2.8289	2.4706				2.97	2.7515	2.6428	3.3194			NA	NA	4.0679	4.0615	4.0617			NA	NA	2.9479	2.7881	3.2487			NA	NA	2.2459	0	2.6059		
Bankfull Bank Height Ratio		1	0.86	0.9223	0.9895				1	1.0676	0.9202	1.0222	0 ×		NA	NA	0.8852	0.8474	0.8496			NA	NA	0.8709	0.7476	0.7549			NA	NA	0.9329	0.8741	0.9258		
Cross Sectional Area between end pins (ft ²)	151.1	131.77	130.6	128.29	138.79			160.07	146.86	151.17	148.68	149.87			NA	NA	88.887	85.31	86.947			NA	NA	87.254	79.74	75.709			NA	NA	258.52	250.16	253.7		
d50 (mm)	N/A	2.36	22.6	1.3	6.3			N/A	N/A	N/A	N/A	N/A			NA	N/A	42	15.6	0.4			NA	N/A	N/A	N/A	N/A			NA	N/A	12.4	18.1	30.2		

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

							5			3	UT	to Ca	Exhib ane C	it Tab reek S	le 11b Stream	. Mo n Mitig	nitorii gatior	ng Da I Site	ata - S /Proje	tream	Reac 69	h Dat Main	a Sur Chan	nmar nel (2	y 2232 f	feet)											34
Parameter	Baseline (2006)						l	MY-1 (2007)						MY-2 (2008)					MY- 3 (2009)						MY-4 (2010)						MY-5						
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Me	d M	lax	SD4	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	26.6	26,60	26.6	26.6	l de l	1	27.2	27.20	27.2	27.2		1	23.45	26.03	26.31	28.31	2.442	3	22.5	24.54	25.45	25.67	1.767	3	22.68	25.10	23.4	49 29	.14	3.521	3		5 30	22.3	$\geq =$	1	
Floodprone Width (ft)	72	72	72	72		1	72	72	72	72	1-21	1	59.1	75.5	72	95.4	18.4	3	59.1	75.5	72	95.4	18.4	3	59.1	75.5	72	2 95	5.4	18.4	3	10 77				-	
Bankfull Mean Depth (ft)	1.9	1.90	1.9	1.9	181	1_	1.8	1.80	1.8	1.8		1	1.65	1.75	1.65	1.952	0.175	3	1.532	-1.71	1.736	1.87	0.171	3	1.597	1.78	1.7	19 2.0	025	0.22	3		1000				
¹ Bankfull Max Depth (ft)	3.2	3.2	3.2	3.2	ur én l	1	3.1	3.1	3.1	3.1	1:30	1	2.83	3.0133	2.9	3.31	0.259	3	2.86	3.01	2.96	3.21	0.18	3	2.83	3.03	2.8	7 3.	39 (0.312	3	1		1	-	The S	
Bankfull Cross Sectional Area (ft ²)	51	51.00	51	51	- 2-	1	48	48.00	48	48		1	43.42	45.33	45.79	46.77	1.72	3	39.31	41.86	42.09	44.18	2.441	3	38.98	44.36	46.5	55 47	.56	4.685	3		3 11			12.5	
Width/Depth Ratio	13.9	13.90	13.9	13.9	14	1	15.4	15.40	15.4	15.4	1.67	1	12.01	15.03	15.95	17.14	2.683	3	12.03	14.48	14.66	16.76	2.368	3	11.6	14.35	13.	19 18	.24	3.469	3		12 ± 11			125	
Entrenchment Ratio	4	14	$\pi 2$	240	()	0	2.65	2.65	2.65	2.65	1.1	1-1-	2.246	2.95	2.54	4.068	0.978	3	0	2.30	2.829	4.061	2.082	3	2.471	3.05	2.60	06 4.0	062 (0.882	3		12-11				
¹ Bank Height Ratio	2.24	122-0	19.20	24-0	8	0	11	1	1	1	and C	1	0.86	0.89	0.885	0.933	0.037	3	0.847	0.88	0.874	0.922	0.038	3	0.85	0.92	0.92	26 0.	.99	0.07	3		1		1:		
Profile																1.21				12.00 3	The state				100								No.	100-	1200	1.50	
Riffle Length (ft)	=1						55	1.	49	43			8.8	26.5	17	73.1	18.91	22	2.41	28.89	22.93	94.05	23.18	28	5.86	29.25	24.	14 56	6.19	16.64	21			1273		17	
Riffle Slope (ft/ft)			-		(0.004	1.1.27	0.006	0.008	100	112-1	0.002	0.020	0.020	0.052	0.015	20	0.002	0.019	0.012	0.077	0.019	22	0.001	0.018	0.0	11 0.0	082 (0.023	14			1			
Pool Length (ft)	Carrier	1100	1	10	* 100	2-95	24	1.0	57	89	123	(T+	17	69.05	58.5	132	35.17	22	18.99	49.3	36.21	147.1	30.49	29	16.98	63.57	43.	58 15	5.5	40.1	23		-	1		170	
Pool Max depth (ft)			à chi)==i		18.0	14.0	12.200	1	1.30	U-AP	0.470		150	1.22	OR 0	12563	3.15	3.83	3.79	4.5	0.36	29	2.33	3.31	3.2	8 4.	62	0.58	23					1.51	
Pool Spacing (ft)		i in the	here and	n <u>e 1-1</u>			55	150Rue	129	257	1.20	12.5	34	102.52	105	212	41.84	21	20,99	78.47	65.28	176.9	40.27	28	35	97.92	93.3	25 20	1.8	41.89	22		1.1	1		1	
Pattern			122				-	-					1.00.00.		140,01	1000	1525	1.1.200.0	1.5.2	the second	11.00.00	1			Lagonoth	1.		1.1	h.dat.				A ROMAN	. In the second	. Reine	100.2.1	
Channel Beltwidth (ft)		1.2.2	1.2.3		1		1	1	122141	1		1		n i	The second	1	0	1	1	1					1.5.5	1	1	1			í		1.0	1	1.	INC N	
Radius of Curvature (ft)	1	-	100	$i_{\rm s} = i_{\rm s}$	1	1.14	1		1		[]		-	1	1	1.5.6																		1	1		
Rc:Bankfull width (ft/ft)								Pattern data will not typically be collected unless visual data, dir significant shifts from baseli								mensio ine	sional data or profile data indicate										12										
Meander Wa∨elength (ft)			12-1		1	-			1-2-1				1-2.2			100	0									A		1.00	. J			Time i		-			
Meander Width Ratio	Ē	1.9	1	10 201	1.1					T a	TAL					1									10.24		10							120			
Additional Reach Parameters													1.5					-	1													-					
Rosten Classification	-	C4									-	0	A	-	_	C4						C4							-	_	-	-	_				
Channel Thalweg length (ft)							2222						2288						2288						2285						-						
Sinuosity (ft)	,						1 14						1 17						1 17						1 17												
Water Surface Slope (Channel) (ft/ft)							1		0.0	103		-			0.0	17		-			0.0	131			1923			N/A									
BF slope (ft/ft)							0.003						0.0026						0.003						0.0028												
³ Ri% / Ru% / P% / G% / S%		1	1	1			1.0	1		1	h = 3	1	26%		68%	-		1.	36%	1	64%		1.		28%	1.000	669	%	- 1	14		1.000	1	1000	1	1	
³ SC% / Sa% / G% / C% / B% / Be%	March 1								1000				4%	19%	56%	13%	3%	6%	19%	23%	37%	19%	1%	1%	4%	35%	499	% 1	1%	0%	1%	1221	11.7		17 22	1754	
³ d16 / d35 / d50 / d84 / d95 /		1.00	1000			1000	1 301	11	11241	1000			0.816	13.33	25.69	80.51	69.5	1000	0.108	2.95	11.69	79.01	141.9	1 Jan	0.493	8.45	12.3	28 47	.63	83.31	1	1-100-0	4 - 41			1 2 2	
² % of Reach with Froding Banks	N/A				5%						2%					1	0%					1%					1	<u></u>				-					
Channel Stability or Habitat Metric	2					-	-						2						1.			8.00			(a			1.74						-	_		
Biological or Other	-												· · · · · ·							-																	
				_			6.0				_	-						_														L					

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

37

Appendix E. Hydrologic Data

Verification of Bankfull Events Cane Creek / EEP #69													
Date of Data Collection	Date of Occurrence	Method	Photo#										
Late 2005/Early 2006	Late 2005/Early 2006	Visual during construction	N/A										
October 26, 2008	September 7, 2008	Wrack lines	None										
July 24, 2009	June 6, 2009	Crest gauge	N/A										
June 23, 2010	May 17, 2010	Visual observation	N/A										

Table 12. Verification of Bankfull Events